资源类型

期刊论文 67

年份

2023 7

2022 7

2021 6

2020 5

2019 5

2018 1

2017 1

2016 3

2015 2

2014 5

2013 2

2011 4

2010 2

2009 2

2008 2

2007 8

2006 1

展开 ︾

关键词

FRP筋 1

临界应力 1

冲压工艺 1

固有频率 1

填充构件 1

增材制造 1

局部屈曲 1

屈曲 1

应变极限 1

形状函数 1

抗弯性能 1

拓扑优化 1

挠曲方程 1

材料建模 1

模具 1

深水钻井 1

设计理论 1

试验研究 1

起皱 1

展开 ︾

检索范围:

排序: 展示方式:

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 163-175 doi: 10.1007/s11709-014-0272-8

摘要: This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load-deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexural-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural-torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

关键词: flexural-torsional buckling     aluminum alloy beams (AAB)     finite element method (FEM)     theoretical formula    

Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks

Yasser SHARIFI,Sajjad TOHIDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 167-177 doi: 10.1007/s11709-014-0236-z

摘要: Bridge girders exposed to aggressive environmental conditions are subject to time-variant changes in resistance. There is therefore a need for evaluation procedures that produce accurate predictions of the load-carrying capacity and reliability of bridge structures to allow rational decisions to be made about repair, rehabilitation and expected life-cycle costs. This study deals with the stability of damaged steel I-beams with web opening subjected to bending loads. A three-dimensional (3D) finite element (FE) model using ABAQUS for the elastic flexural torsional analysis of I-beams has been used to assess the effect of web opening on the lateral buckling moment capacity. Artificial neural network (ANN) approach has been also employed to derive empirical formulae for predicting the lateral-torsional buckling moment capacity of deteriorated steel I-beams with different sizes of rectangular web opening using obtained FE results. It is found out that the proposed formulae can accurately predict residual lateral buckling capacities of doubly-symmetric steel I-beams with rectangular web opening. Hence, the results of this study can be used for better prediction of buckling life of web opening of steel beams by practice engineers.

关键词: steel I-beams     lateral-torsional buckling     finite element (FE) method     artificial neural network (ANN) approach    

Proposing two new methods to decrease lateral-torsional buckling in reduced beam section connections

Samira EBRAHIMI; Nasrin BAKHSHAYESH EGHBALI; Mohammad Mehdi AHMADI

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1581-1598 doi: 10.1007/s11709-022-0886-1

摘要: Reduced web section (RWS) connections can prevent lateral-torsional buckling and web local buckling experienced by reduced beam section (RBS) connections. In RWS connections, removing a large portion of web can result in shear demand intolerance induced to plastic hinge region. The present study aims to resolve the problems of RBS and RWS connections by proposing two new connections: (1) RBS with stiffener (RBS-ST) and (2) RBS with reduced web (RW-RBS) connections. In the first connection (RBS-ST), a series of stiffeners is connected to the beam in the reduced flange region, while the second connection (RW-RBS) considers both a reduction in flanges and a reduction in web. Five beam-to-column joints with three different connections, including RBS, RBS-ST, and RW-RBS connections were considered and simulated in ABAQUS. According to the results, RBS-ST and RW-RBS connections can decrease or even eliminate lateral-torsional buckling and web local buckling in RBS connection. It is important to note that RW-RBS connection is more effective in long beams with smaller shear demands in the plastic hinge region. Moreover, results showed that RBS and RW-RBS connections experienced strength degradation at 4% to 5% drift, while no strength degradation was observed in RBS-ST connection until 8% drift.

关键词: RBS     RBS-ST     RW-RBS     lateral-torsional buckling     cyclic performance    

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1141-1152 doi: 10.1007/s11709-022-0866-5

摘要: The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper. Firstly, the flexural stiffness and torsional stiffness of space truss arches are deduced. The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch. However, since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio, the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified. Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy. Secondly, the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio. By assuming that all components of space truss circular arches bear only axial force, the design formulas to prevent the local buckling of chord and transverse tubes are deduced. Finally, the bearing capacity design equations of space truss arches are proposed under vertical uniform load.

关键词: torsional stiffness     strength design     elastic buckling     space truss arches     out-of-plane    

Cyclic responses of three 2-story seismic concentrically braced frames

Ching-Yi TSAI, Keh-Chyuan TSAI, Chih-Han LIN, Chih-Yu WEI, Kung-Juin WANG, Yi-Jer YU, An-Chien WU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 287-301 doi: 10.1007/s11709-010-0087-1

摘要: Three full scale two-story steel concentrically braced frames (CBFs) were tested at the National Center for Research on Earthquake Engineering (NCREE) in Taipei. The specimen is a single bay with the braces arranged in a two-story X-brace configuration. The main differences among the three tests are the brace types (hollow structural or wide-flange section) and the design criteria adopted for the gusset plate connections. Results of these three tests confirm that the two-story X-shape steel CBFs all have rather good energy dissipation characteristics up to a story drift of about 0.03 radians under the cyclically increasing lateral displacements. Severe brace local buckling and out-of-plane displacements were observed during each test. Tests confirm that both the 2-linear and 8-elliptical designs of the gusset plate connection provide satisfactory ductility for the steel CBF. Hollow structural section (HSS) braces fractured at a story drift smaller than that found using wide flange sections. The nonlinear fine element method (FEM) program ABAQUS was used to simulate the responses of the specimen. The base shear versus the story drift relationships obtained from the tests and the FEM analytical results are quite agreeable in various levels of lateral frame displacement. The analytical results confirm that the severe out-of-plane buckling of the braces can be accurately simulated. FEM analyses also illustrate that the steel moment resisting frame takes about 40% story shear when the inter-story drift is greater than 0.02 radians.

关键词: concentrically braced frame (CBF)     full-scale test     finite element (FE) analysis     flexural buckling     local buckling    

Mechanism of self-excited torsional vibration of locomotive driving system

Jianxin LIU, Huaiyun ZHAO, Wanming ZHAI

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 465-469 doi: 10.1007/s11465-010-0115-9

摘要: A single wheelset drive model and 2-DOFs torsional vibration model were established to investigate the self-excited torsional vibration of a locomotive driving system. The simulation results indicate that the self-excited torsional vibration occurs when the steady slip velocity is located at the descending slope of the adhesion coefficient curve. The principle of energy conservation was used to analyze the mechanism of the self-excited vibration. The factors affecting on the amplitude of the self-excited vibration are studied.

关键词: locomotive     driving system     self-excited torsional vibration     mechanism     influence factor    

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 41-49 doi: 10.1007/s11465-014-0284-z

摘要:

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

关键词: thermal buckling     laminated composite plates     anisotropy     critical buckling temperature     finite-element method     high precision rectangular Hermitian element    

Experimental study and numerical simulation on compressive buckling behavior of thin steel skins in unilateral

Nicholas KEAGE, Christopher MAIOLO, Rebecca PIEROTTI, Xing MA

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 335-343 doi: 10.1007/s11709-011-0121-y

摘要: In this paper, a practical test and finite element analysis has been undertaken to further investigate the effects of contact buckling. A test rig was designed and constructed to record vertical and transverse deflections of compressively loaded steel skin plates. The boundary conditions were modeled as fully fixed. A finite element analysis was also undertaken using the software package Strand7. Results from both analyses have been examined and compared to data established from previous studies on contact buckling. Both the finite element analysis and practical results correlate well with this data. The result of the investigation has confirmed contact buckling theories and has foreshadowed the onset of the newly observed phenomenon of secondary contact buckling.

关键词: compressive     buckling     thin steel skins     unilateral contact     rigid constraints    

Finding buckling points for nonlinear structures by dynamic relaxation scheme

Mohammad REZAIEE-PAJAND, Hossein ESTIRI

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 23-61 doi: 10.1007/s11709-019-0549-z

摘要: Dynamic Relaxation Method (DRM) is an explicit approach for solving the simultaneous systems of equations. In this tactic, the fictitious mass and damping are added to the static governing equations, and an artificial dynamic system is constructed. By using DRM for nonlinear analysis, the structural static equilibrium path is obtained. This outcome is extremely valuable, since it leads to the behavior of structures. Among the finding related to the structural static path are the critical and buckling points for nonlinear structures. In this paper, a new way for calculating the load factor is proposed by setting the external work zero. Mixing the dynamic relaxation scheme with external work technique has not been formulated so far. In all incremental-iterative methods, the load factor increment sign should be determinated by extra calculations. This sign leads to increase or decrease of the load increment. It is worth emphasizing that sign of the load factor increment changes at the load limit points. Therefore, the sign determinations are required in the common work control methods. These disadvantages are eliminated in the proposed algorithm. In fact, the suggested load factor depends only on the Dynamic Relaxation (DR) fictitious parameters. Besides, all DR calculations are performed via vector operation. Moreover, the load factor is calculated only by one formula, and it has the same relation in the all solution processes. In contrast to the arc length techniques, which requires the sign determined, the proposed scheme does not need any sign finding. It is shown that author’s technique is quicker than the other dynamic relaxation strategies. To prove the capability and efficiency of the presented scheme, several numerical tests are performed. The results indicate that the suggested approach can trace the complex structural static paths, even in the snap-back and snap-through parts.

关键词: load factor     external work     dynamic relaxation     static equilibrium path     large displacement    

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 306-325 doi: 10.1007/s11709-022-0890-5

摘要: This paper numerically studied the effect of uncertainty and random distribution of concrete strength in beams failing in shear and flexure using lattice modeling, which is suitable for statistical analysis. The independent variables of this study included the level of strength reduction and the number of members with reduced strength. Three levels of material deficiency (i.e., 10%, 20%, 30%) were randomly introduced to 5%, 10%, 15%, and 20% of members. To provide a database and reliable results, 1000 analyses were carried out (a total of 24000 analyses) using the MATLAB software for each combination. Comparative studies were conducted for both shear- and flexure-deficit beams under four-point loading and results were compared using finite element software where relevant. Capability of lattice modeling was highlighted as an efficient tool to account for uncertainty in statistical studies. Results showed that the number of deficient members had a more significant effect on beam capacity compared to the level of strength deficiency. The scatter of random load-capacities was higher in flexure (range: 0.680–0.990) than that of shear (range: 0.795–0.996). Finally, nonlinear regression relationships were established with coefficient of correlation values (R2) above 0.90, which captured the overall load–deflection response and level of load reduction.

关键词: lattice modeling     shear failure     flexural failure     uncertainty     deficiency     numerical simulation    

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 131-142 doi: 10.1007/s11709-016-0376-4

摘要: In this paper, a novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of vibrations for a cable stayed bridge model generated using ABAQUS software. Two lateral steel beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification approach. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge with duration of 30 s supporting on real data of a strong wind from the literature. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze both the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared a safer structure against vertical and torsional vibrations and rarely expected flutter wind speed. Furthermore, the coupling between the vertical and torsional mode shapes has been removed to larger natural frequencies magnitudes with a high factor of safety. The novel structural approach manifested great efficiency in increasing vertical and torsional stiffness of the structure.

关键词: aeroelastic instability     structural damping     flutter wind speed     bending stiffness     torsional stiffness    

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 352-360 doi: 10.1007/s11709-017-0453-3

摘要:

Concrete members historically have used either pre-stressed steel or steel bars. In recent years there has been an increased interest in the use of fiber reinforced polymer (FRP) materials. However, the flexure behavior of a hybrid system reinforced by the combination of pre-stressed steel and glass fiber reinforced (GFRP) is still relatively unknown. The purpose of this work is to study this. Two slabs of 100 and 150-millimeter thickness, with a span of 2.1 m reinforced with both pre-stressing steel and GFRP were constructed and tested to failure using ACI 318-11 and ACI 440.1R-15. The concrete had strength of 31 MPa and the slabs were respectively reinforced with 5#4 bars and 3#5 bars. Each slab had 37.41 mm2 prestressing wire with a failure stress of 1722.5 MPa. The experimental flexural strength and deflection of slabs were compared with their respective sizes theoretical slabs. The theoretical slabs were either reinforced with pre-stressed steel or GFRP rebars, or a hybrid system. It was found that the hybrid system produces better results.

关键词: Partial pre-stressing     composite structures     GFRP bars    

Probabilistic stability of uncertain composite plates and stochastic irregularity in their buckling mode

《结构与土木工程前沿(英文)》   页码 179-190 doi: 10.1007/s11709-022-0888-z

摘要: In this study, the mechanical properties of the composite plate were considered Gaussian random fields and their effects on the buckling load and corresponding mode shapes were studied by developing a semi-analytical non-intrusive approach. The random fields were decomposed by the Karhunen−Loève method. The strains were defined based on the assumptions of the first-order and higher-order shear-deformation theories. Stochastic equations of motion were extracted using Euler–Lagrange equations. The probabilistic response space was obtained by employing the non-intrusive polynomial chaos method. Finally, the effect of spatially varying stochastic properties on the critical load of the plate and the irregularity of buckling mode shapes and their sequences were studied for the first time. Our findings showed that different shear deformation plate theories could significantly influence the reliability of thicker plates under compressive loading. It is suggested that a linear relationship exists between the mechanical properties’ variation coefficient and critical loads’ variation coefficient. Also, in modeling the plate properties as random fields, a significant stochastic irregularity is obtained in buckling mode shapes, which is crucial in practical applications.

关键词: uncertain composite plate     stochastic assume mode method     Karhunen−Loève theorem     polynomial chaos approach     plate buckling     irregularity in buckling mode shapes    

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 378-389 doi: 10.1007/s11709-021-0706-z

摘要: In this study, we conducted experimental tests on two specimens of reinforced concrete beams using a three-point bending test to optimize the flexure and stiffness designs. The first specimen is a reinforced concrete beam with an ordinary reinforcement, and the second specimen has an invented reinforcement system that consists of an ordinary reinforcement in addition to three additional bracings using steel bars and steel plates. The results of the flexure test were collected and analyzed, and the flexural strength, the rate of damage during bending, and the stiffness were determined. Finite element modeling was applied for both specimens using the LS-DYNA program, and the simulation results of the flexure test for the same outputs were determined. The results of the experimental tests showed that the flexural strength of the invented reinforcement system was significantly enhanced by 15.5% compared to the ordinary system. Moreover, the flexural cracks decreased to a significant extent, manifesting extremely small and narrow cracks in the flexure spread along the bottom face of the concrete. In addition, the maximum deflection for the invented reinforced concrete beam decreased to 1/3 compared to that of an ordinary reinforced concrete beam. The results were verified through numerical simulations, which demonstrated excellent similarities between the flexural failure and the stiffness of the beam. The invented reinforcement system exhibited a high capability in boosting the flexure design and stiffness.

关键词: three-point flexure test     softening stage     flexural crack     flexural strain    

An analytical method for calculating torsional constants for arbitrary complicated thin-walled cross-sections

DU Baisong, GE Yaojun, ZHOU Zheng

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 293-297 doi: 10.1007/s11709-007-0038-7

摘要: In this paper, an analytical method is proposed for calculating torsional constants for complicated thin-walled cross-sections with arbitrary closed or open rib stiffeners. This method uses the free torsional theory and the principle of virtual work to build governing equilibrium equations involving unknown shear flows and twisting rate. After changing the form of the equations and combining these two unknowns into one, torsional function, which is a function of shear flow, shear modulus, and twisting rate, is included in the governing equations as only one of the unknowns. All the torsional functions can be easily obtained from these homogeneous linear equations, and torsional constants can be easily obtained from the torsional functions. The advantage of this method is that we can easily and directly obtain torsional constants from the torsional functions, rather than the more sophisticated shear flow and twisting rate calculations. Finally, a complicated thin-walled cross-section is given as a valid numerical example to verify the analytical method, which is much more accurate and simpler than the traditional finite element method.

关键词: homogeneous     complicated thin-walled     numerical example     advantage     torsional function    

标题 作者 时间 类型 操作

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

期刊论文

Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks

Yasser SHARIFI,Sajjad TOHIDI

期刊论文

Proposing two new methods to decrease lateral-torsional buckling in reduced beam section connections

Samira EBRAHIMI; Nasrin BAKHSHAYESH EGHBALI; Mohammad Mehdi AHMADI

期刊论文

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

期刊论文

Cyclic responses of three 2-story seismic concentrically braced frames

Ching-Yi TSAI, Keh-Chyuan TSAI, Chih-Han LIN, Chih-Yu WEI, Kung-Juin WANG, Yi-Jer YU, An-Chien WU,

期刊论文

Mechanism of self-excited torsional vibration of locomotive driving system

Jianxin LIU, Huaiyun ZHAO, Wanming ZHAI

期刊论文

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

期刊论文

Experimental study and numerical simulation on compressive buckling behavior of thin steel skins in unilateral

Nicholas KEAGE, Christopher MAIOLO, Rebecca PIEROTTI, Xing MA

期刊论文

Finding buckling points for nonlinear structures by dynamic relaxation scheme

Mohammad REZAIEE-PAJAND, Hossein ESTIRI

期刊论文

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

期刊论文

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

期刊论文

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

期刊论文

Probabilistic stability of uncertain composite plates and stochastic irregularity in their buckling mode

期刊论文

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

期刊论文

An analytical method for calculating torsional constants for arbitrary complicated thin-walled cross-sections

DU Baisong, GE Yaojun, ZHOU Zheng

期刊论文